Optimized Curriculum and Assessment Plan

“Professional teaching is inherently collective, something to be developed with colleagues who are partners in learning and problem solving.”
(Darling-Hammond, 2006)

Assessment drives instruction. If we all agree to a common destination, then we are able to collectively build a program that allows us to get our students where we want them to go.

In our case, our destination is our mission statement:

To prepare a diverse student body for success in college and to be thoughtful, contributing members of society.

To move students towards our mission, to clarify our collective goals, and to professionalize our practice by adopting common language, standards, and assessments, this intersession will be focused on coming together to decide our destination. When thinking about assessment in the context of our mission, it’s helpful to have a common taxonomy.

One such taxonomy is to the left. Based largely on the work of the Education Policy Improvement Center (EPIC) and ConnectEd, the four domains of

- Content
- Cognitive Skill
- Habits of Success (Non-Cognitive Skills)
- Exhibitions (Real World Experiences)

offer a way to look at college and career readiness.

Each of these domains is important. Each needs to be assessed. However, each requires a different method of assessment.

1. **Content**, for example: you either know it or you don’t. How many sides does an octagon have? Which line marks a transition in Neruda’s “We are many”? What are the stages of photosynthesis? Is *comer* a regular or irregular verb? Whose assassination precipitated the first World War? What question types will you receive on the SAT? What is compound interest?

2. **Cognitive skills**, conversely, require spiraling because they are developed on a continuum. As Jerome Bruner notes, thinking skills are what we do with information, and those skills take time, practice, and repetition to hone. If “education is what is left after all that has been learnt is forgotten,” then cognitive skills are the intellectual remnants of education. Even when content is gone, our ability to pose problems, research them, interpret information, and communicate our understandings—all while attending to precision and accuracy—remains.

“Intellectual activity anywhere is the same, whether at the frontier of knowledge or in a third grade classroom...The difference is in degree, not kind.”
-Jerome Bruner
3. **Habits of Success** are commonly referred to as the “non-cognitive skills” or “psychological factors” in learning. They include self-awareness, self-management, social awareness, relationship management, and decision making skills. While something as simple as a checklist can be used to measure content knowledge, and a developmental continuum is required for the assessment of cognitive skills, habits of success are more difficult to assess systematically. This is because **habits of success suggest an approach rather than an assessment**. Finding time, space, and structures for students to be reflective is important for building self-awareness—far more important than assessing a student’s self awareness on a rubric. In this arena, a rubric is valuable for offering common language and a tool for discussing progress, but it is the thinking, the conversation, and the common approach that is even more important, since the evidence of adopting habits of success is, well, success.

4. **Expeditions** are real-world experiences that are badged based on a student’s investment in the experience itself. The idea is to practice cognitive skills and habits of success in rich, varied ways.

<table>
<thead>
<tr>
<th>High school ready</th>
<th>What inspires us?</th>
<th>What contribution do I want to make to the world?</th>
<th>What is my right fit college?</th>
<th>What do I want to do as an adult?</th>
<th>How can I live a healthy and productive life?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expose</td>
<td>Cultural Appreciation</td>
<td>Example Discover a whole range of cultural art forms (dance, music, cuisine, poetry, etc.)</td>
<td>Example Participate in a service project related to your interests and strengths</td>
<td>Example Tour colleges</td>
<td>Example Shadow in at least three different jobs</td>
</tr>
<tr>
<td>College ready</td>
<td>Conduct a cultural exploration: “What Inspires this Culture?”</td>
<td>Lead a community service project based on some demonstrated civic need (and linked to your passions)</td>
<td>Spend at least one night away from home at a university</td>
<td>Intern for at least one quarter in a field of interest to you</td>
<td>Set a physical attainment goal in an activity of great interest to you</td>
</tr>
<tr>
<td>Early College</td>
<td>Design a sociological exploration with field study</td>
<td>Design and execute a community service project</td>
<td>Spend at least 3 nights at university you’re interested in attending</td>
<td>Extended Internship in a field of interest</td>
<td>Show advancement in a physical activity about which you are passionate</td>
</tr>
</tbody>
</table>

The remainder of this document provides an in-depth look at how we can collaboratively build and continually refine a curriculum and assessment system that meets the needs of our students. We have this opportunity to create a research-based curriculum and assessment plan that is more responsive to
the needs of our students, provides more tools—to teachers, families, and, most importantly, to students—to guide learning, places relevant learning data in the hands of everyone who can take action based on that information, and offers opportunities for professional development experiences that honor the unique children and communities we serve while working collectively towards shared goals.

Overview:

<table>
<thead>
<tr>
<th>Assessments</th>
<th>Content assessments</th>
<th>Cognitive Skills</th>
<th>Habits of Success</th>
<th>Expeditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content</td>
<td>Performance tasks</td>
<td>Continuous, led by mentors and grade-level teams</td>
<td>Performance Tasks and Exhibitions</td>
</tr>
<tr>
<td>Assessment Instruments</td>
<td>Guides</td>
<td>Cognitive Skills Rubric (continuum), which is contextualized to each performance task with “Look-Fors” in Show Evidence</td>
<td>Habits of Success Continuum</td>
<td>Badges</td>
</tr>
<tr>
<td>Assessment Platform</td>
<td>Illuminate</td>
<td>Show Evidence</td>
<td>Next year, the Personalized Learning Plan</td>
<td>Show Evidence</td>
</tr>
<tr>
<td>Learning resources</td>
<td>Activate playlists</td>
<td>Learning modules</td>
<td>Orientation, Community Activities, Self-Directed Learning Cycle, Habits of Success Continuum</td>
<td>Varied, depending on the course</td>
</tr>
<tr>
<td>Dedicated Time</td>
<td>Personalized Learning Time</td>
<td>Core</td>
<td>Community</td>
<td>7-8 weeks per year of immersive Expeditions</td>
</tr>
</tbody>
</table>
Content Assessments

Content assessments are one component of Summit’s assessment program, which aims to define college readiness for our students, faculty, and families.

Courses are organized around content and cognitive skill development. Together, these are the factors that focus the scope of the course as well as the course’s degree of difficulty.

The content that makes its way into our assessments comes from a variety of sources:

<table>
<thead>
<tr>
<th>ELA</th>
<th>Social Studies</th>
<th>World Language</th>
<th>Science</th>
<th>Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Common Core Literacy Standards</td>
<td>▪ California Standards</td>
<td>▪ ACTFL</td>
<td>▪ Next Generation Science Standards</td>
<td>▪ Common Core Mathematics Standards</td>
</tr>
<tr>
<td>▪ California Standards</td>
<td>▪ National Historical Thinking Standards (UCLA)</td>
<td>▪ California Standards</td>
<td>▪ California Standards</td>
<td>▪ NWEA MAP / Descartes</td>
</tr>
<tr>
<td>▪ Advanced Placement materials</td>
<td>▪ AP materials</td>
<td>▪ AP materials</td>
<td>▪ AP materials</td>
<td>▪ California Standards</td>
</tr>
<tr>
<td>▪ NWEA MAP / Descartes</td>
<td>▪ ACT college ready standards</td>
</tr>
</tbody>
</table>

College Knowledge

<table>
<thead>
<tr>
<th>Financial Literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ College Knowledge (Conley)</td>
</tr>
</tbody>
</table>

From these sources, teams worked together to distill the various standards and frameworks into instructional models that articulate the most logical and effective progressions of content development. The resulting **content guides** are living documents that express the core content of each Summit course.

Science Guide 1

Content guides are comprised of **focus areas**. These focus areas are concepts, knowledge, and discrete skills that can be learned, practiced, and assessed independently. Individual focus areas are akin to individual exercises: they are the curls, layup drills, and openings of the Summit curriculum. Simply doing curls will not lead to physical health. Layup drills alone will not make anyone a great basketball player. Perfecting a queen’s gambit will not win chess tournaments. However, these foundational practices, when placed in the authentic context of a project, are the building blocks to excellent performance.
If we are to take the advice of Grant Wiggins and “assess what [we] value and value what [we] assess,” then we need to assess students’ basic understandings of each focus area, and we need our assessments to be valid and efficient.

Content assessments, which are not the final assessments of core content, but do offer students the immediate feedback they need to target their practice and rapidly improve their performance, are delivered on-demand via the Illuminate-Activate system.

Here’s a snapshot of how this works, from the student’s perspective:

1. Student sets a learning goal, independently or with her mentor
2. Student creates a learning plan, with timeline, to help her meet her learning goals
3. Student begins work on a project that helps her meet her learning goal
4. Student sees the focus areas that are relevant to the completion of that project
5. Student works through her learning plan, showing her understanding of important content through content assessments, which provide immediate feedback on discrete knowledge, skills, and concepts that are central to her understanding

Our job, when creating content assessments, is to ensure that they are valid measures of a student’s knowledge in a specific focus area.

1. The first step to creating valid content assessments is to create clear, concise learning objectives for the focus area. Bloom’s Taxonomy is greatly helpful when creating learning objectives. See below example:

 Title of Focus Area: Imagery

 Objectives:
 i. Be able to define the terms:
 1. Imagery
 2. visual imagery
 3. auditory imagery
 4. olfactory imagery
 5. tactile imagery
 6. gustatory imagery
 ii. Identify imagery in writing
 iii. Identify the type of imagery in writing
 iv. Identify the effect(s) of imagery in a piece of writing

 Note: There should be no more than five (5) objectives for any one focus area.

2. As you can see from the above example, the first objective in a playlist typically focuses on the discipline-specific terms necessary for proficiency on the focus area:
3. The remainder of the objectives (no more than 4) target the application of skills or knowledge:
 o “By the time you finish this playlist, you should be able to:”
4. Label skills in a logical progression (typically, least complex to most complex—Bloom’s Taxonomy is a good resource for doing this)
5. After creating 1-5 learning objectives for a focus area, it is essential that each objective is assessed in the content assessment, which is housed in the Illuminate SIS. In order to facilitate the valid assessment of each learning objective in a focus area, here are some guidelines for building content assessments:
 a. Each objective is assessed at least two times on each content assessment.
 i. **Rationale:** There is no magic number here; some objectives will require more assessment than others to be trustworthy. Certainly, you are welcome to add additional questions around some objectives. However, two assessments per objective, as a rule of thumb, is a minimum in order to minimize the reward of flukes and guesses in our assessment program.
 b. Content assessments include exactly 10 questions.
 i. **Rationale:** As we strive to balance the ideal with the real, we are faced with challenges around how students spend their time. Graduation must be possible. Assessments should motivate learning. There needs to be some standardization when creating an assessment plan. Also, content assessments must be put in their place: key content is to be applied in performance tasks, so these discrete assessments are meant to buttress students’ success on the performance tasks. Thus, we should not create unwieldy or unnecessarily complex content assessments.

Note: Illuminate creates assessment items like this:

- You create a “bucket” of assessment items by objective
 - Ex: Imagery - Defining
- You create a 10 question Content Assessment
 - Ex: Imagery
- You indicate how many questions in the Content Assessment link to a particular “bucket” (objective)
 - Ex: 2

See diagram to right

After building a content assessment, try to take it a few times. Make sure that it is, in fact, measuring what you want it to measure. Revise accordingly.
It may be helpful at this point to discuss what is being claimed when a student passes a content assessment.

- If you pass a content assessment with at least an 80%, the claim being made is that you are, at this point in time, competent in the focus area being assessed. That is, you are competent at the objectives defined for that focus area.

Why does this matter?
- It matters because the way that a student passes a course is by demonstrating competence on both content (via content assessments) and cognitive skills (via performance tasks).

<table>
<thead>
<tr>
<th>Quadratic Functions</th>
<th>Interpretation at Level 3</th>
<th>Algebra I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagery</td>
<td>Contextualization at Level 2</td>
<td>English 8</td>
</tr>
</tbody>
</table>

Key Features of Content Assessments:

i. Assess all learning objectives of a focus area (at least 2 questions per objective).

ii. 10 questions total; competence is defined as 8 or more questions answered correctly.

iii. Built in Illuminate to provide immediate feedback for students, teachers, and parents.
Playlists

Playlists support students’ work towards mastery of content, leading to college readiness. Every focus area has a playlist to help students learn the necessary content. Every focus area also has a content assessment, which is how students show their understandings of the content.

Playlists are organized to promote clarity and engagement. They also mirror research-based theories of learning, in which students have frequent, focused checks for understanding that will provide them with instantaneous learning feedback.

All playlists are built in the Activate system, which works seamlessly with Illuminate. At their basest levels, playlists operate like super textbooks, with focused formative assessments and frequent opportunities for feedback. If a resource can be accessed online, it can be placed into a playlist.

Websites, videos, embedded formative assessments, handouts: these are all learning resources that can be made available on Activate and shared with everyone across SPS, across our network of schools, and around the world.
When creating playlists, here are a few maxims to keep in mind:

1. **Quality, not quantity**
 The most alluring thing about building a playlist is to dump resources into it. Although making a long, resource-rich playlist provides the creator with a feeling of accomplishment, that same playlist often leads students to confusion (because of sheer quantity) and wasted time (because of variable quality). There is no “right” number of resources to place in a playlist, but certainly fewer high-quality resources are preferable to more repetitive, or variable quality resources.

2. **Common language**
 One advantage of textbooks is that they will use the exact same language again and again throughout the text. Some books use the word *claim*; some, *topic sentence*; others, *point*. They don’t jump back and forth from one term to another. When creating a playlist, try your best to use common language and, when a high-quality resource uses different language than your standard, be sure to indicate the change in the resource description.

3. **Everything is objective-focused**
 Most importantly, every resource in a playlist should be organized into subtopics that mirror the focus area’s objectives. This way, the content assessment, playlist organization, and resources are all focused on the same thing: helping the student show mastery of focus area objectives.

4. **Interactive trumps static**
 In San Jose surveys about playlists, over twice as many students reported that they learned more from interactive formative assessments than from static assessments. Formative assessments, interactive by their very nature, were named, by far, the #1 most helpful type of resource in a playlist. The more interactive a resource, the better for student learning and engagement.

*For instructions on how to create a great playlist, search for “Optimized Common Assessment Plan” playlist on Activate.

Key Features of Playlists:

i. **Provide the highest-quality resources to help students reach all objectives in a focus area.**

ii. **Organization is clear, concise, and user-friendly.**

iii. **Built in Activate so that multiple formative assessments provide quick checks for understanding.**
Example of a Playlist:

Projects drive to the heart of student learning. They are the assessments that frame our curriculum and define our courses, merging cognitive skill development with the most important content knowledge that students need to be prepared for college.

The diagram to the right will explain what a project is, and the following pages will describe the essential elements of a learning module and performance task.
Performance Tasks

Performance tasks are one component of Summit’s assessment program, which aims to define college readiness for our students, faculty, and families. **Performance tasks are assessed on SPS’s continuum of cognitive skills.**

Courses are organized around content and cognitive skill development. Together, these are the factors that focus the scope of the course as well as the course’s degree of difficulty.

The cognitive skills that form the backbone of performance tasks are derived from a variety of sources. Below are some of the primary sources used to develop our cognitive skills continuum, which is a living document created with support from the Stanford Center for Assessment, Learning, and Equity (SCALE), the same group that creates Performance Tasks for the Smarter Balanced Assessment Consortium.

<table>
<thead>
<tr>
<th>Common Core Mathematics Practice Standards</th>
<th>Common Core Literacy Standards</th>
<th>National Academy of Sciences / Next Gen Science Standards</th>
<th>National Center for History in Schools Historical Thinking Standards</th>
<th>Assessment and Teaching of 21st Century Skills Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETS Personal Potential Collegiate Index</td>
<td>EPIC’s Key Cognitive Strategies</td>
<td>CRESTT Measure of Workforce Readiness</td>
<td>ConnectED’s College and Career Ready Framework</td>
<td>AAC&U College Learning for the New Global Century</td>
</tr>
</tbody>
</table>

Like much of our work, our cognitive skills continuum is a document that drives us in the right direction—towards the best research about assessment—without claiming to be perfect. Simply put, were there a beautiful, clean, and comprehensive cognitive skill continuum that existed in the world, we would take it. There is not. However, the lack of a perfect tool does not diminish the power of moving together towards a unified vision of teaching and learning. Much of our continued work to develop the cognitive skills rubric will be led by the Cognitive Skills Specialist.

Performance tasks themselves are the final products of project-based learning. Amazing as it is, performance task types almost exclusively fit into the below types of communication and types of products. Perhaps unsurprisingly, these performance task types mirror the Common Core’s framework:

<table>
<thead>
<tr>
<th>Type of communication</th>
<th>Type of product</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Argument</td>
<td>• Written</td>
</tr>
<tr>
<td>• Exposition</td>
<td>• Oral</td>
</tr>
<tr>
<td>• Narration</td>
<td>• Multimedia</td>
</tr>
</tbody>
</table>
Of course, different disciplines suggest specific performance task types. Here are two examples:

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Type of Communication</th>
<th>Type of Product</th>
<th>Product</th>
<th>Performance Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science – Bio</td>
<td>Exposition</td>
<td>Written</td>
<td>Lab Report</td>
<td>Lab Report - Cellular Respiration</td>
</tr>
<tr>
<td>ELA and Social Studies</td>
<td>Argument</td>
<td>Spoken</td>
<td>Persuasive Speech</td>
<td>Persuasive Speech on a current social issue with roots in historical inequity</td>
</tr>
</tbody>
</table>

The performance task itself is a combination of cognitive skills—research, interpretation, and expository writing—as well as content knowledge—L.04.07 Photosynthesis and Cellular Respiration.

Performance tasks are linked to relevant cognitive skills and to the power standards of a course.

Performance tasks are authentic, valid measures of student achievement that are assessed on the cognitive skills rubric and housed in Show Evidence.

Backwards design (Wiggins & McTighe) employed in conjunction with the Buck Institute’s Project-Based Learning framework is a good method for creating high-quality, engaging performance tasks.

By using this framework, performance tasks will be the “main course” – the drivers of student learning throughout core time, where students learn the material while completing the project – rather than “dessert,” or the unit test that is plopped at the end of a period of learning. For an overview of the Buck Institute’s essential elements, see this article.

For step-by-step guidance creating project-based performance tasks, refer to the PBL 101 Guidebook. Be sure to examine this project design rubric (included in the Guidebook and loaded into Show Evidence), which will help guide your work in creating performance tasks.

To help facilitate the creation of high-quality performance tasks, a tremendous amount of time has been spent determining power standards for every course and the appropriate cognitive skill levels on the cognitive skills rubric to help scaffold student learning towards the goal of college readiness. Performance tasks are suggested for courses in most disciplines (ELA, Science, and Math) as a foundation for our collective work. These are not the end-all-be-all of performance tasks—indeed, our goal is to get an assessment plan that we are happy to begin with as an MVP for our first year adopting a common assessment plan, not as some codified list of Summit Assessments that will be set in stone. It is our job to continually reflect upon and collaborate to improve our assessments and instruction, and to accelerate the student learning that results. One of our first steps is to agree on a common performance task sequence for every course and every grade level.
Sample Grade 9 Project plan:

<table>
<thead>
<tr>
<th></th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanish</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td></td>
<td>6</td>
<td></td>
<td>7</td>
<td></td>
<td>8</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>11</td>
<td></td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Purple monoliths represent approximately 7-8 weeks of expeditions.

Obviously, the above is a simple sample visualization of a 9th grader’s year. The idea is, though, that students would work through projects throughout the year in core time. As many of these projects as authentically possible will be interdisciplinary. By finishing each subject—Spanish I, World History I, English 9, Biology, and Algebra I—each student must demonstrate competence on the appropriate cognitive skills as well as on the required content in the course. As a way of thinking of the role that performance tasks play in the curriculum, here is an example to help reveal how the pieces work together:
As you can see, the most important course content is embedded in the performance tasks. Content knowledge is assessed in content assessments. Cognitive skill development is assessed in performance tasks, but content is integrated into the tasks so that content is applied authentically and deeply understood.

Grading:
Currently, the Data and Information team is creating methods for converting cognitive skills assessments into grades. For next year, here is what to expect:

<table>
<thead>
<tr>
<th>Process</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. We build Performance Tasks off of the cognitive skills rubric categories (e.g., “Precision and Accuracy”) and achievement bands (e.g., “Minimally acceptable to advance to 9th grade”).</td>
<td>• Here’s a descriptor from the cognitive skills rubric (Problem Formulation, Minimally acceptable to advance to 9th grade): “Can fully explain one appropriate approach to a problem.” This is one level of a cognitive skill built into the performance task titled “Business Plan.”</td>
</tr>
<tr>
<td>2. We upload those Performance Tasks into Show Evidence.</td>
<td>• A look-for becomes: “Explanation of space usage is thorough, mathematically sound, and legally compliant.”</td>
</tr>
<tr>
<td>3. We write “Look-Fors” for each Performance Task in Show Evidence that are linked to the appropriate cognitive skill rubric descriptors but specific to the performance task.</td>
<td>Notice how the look-for is the application of a cognitive skill in the specific context of a performance task.</td>
</tr>
<tr>
<td>4. These “Look-Fors” bridge the gap between the overarching cognitive skills and the specific work products required of each performance task.</td>
<td></td>
</tr>
<tr>
<td>5. Grades come from the “Look-Fors” and content assessments.</td>
<td></td>
</tr>
</tbody>
</table>

The actual assessment tool (the progression of look-fors) is not wildly different from the descriptors on any good rubric. However, the philosophical shift is significant. First, the unwavering focus is on cognitive skill development, not content acquisition; content is the vehicle for developing cognitive skills. Second, specific evidence is tagged in the body of the student’s work and linked to the cognitive skill rubric. The types of data we will be able to collect in order to reflect, refine, and revise is substantial. Questions such as these will arise:

- “Why would a student show evidence of excellent interpretation skills in Spanish but poor interpretation skills in science?”
- “Difficulty in reading is correlated to low scores across the board. How can we support low-skilled readers so that they are able to perform better across the curriculum?”
- “Are our assessments valid measures of students’ cognitive achievement and growth on standardized measures such as the EPAS and the Smarter Balanced assessments?”

The ongoing conversation around our students’ cognitive skill development and the opportunities for us to enhance our practice as a result is an important product of this shift in focus.

“Education is what survives when what has been learned has been forgotten.”
Learning Modules

For students to have the tools they need to move towards self-directed learning, and for teachers to be able to serve as active facilitators of learning rather than disciples of the lesson plan, we must thoughtfully break down projects in ways that drive inquiry, collaboration, and engagement. Learning Modules, which are written for every performance task and housed in Show Evidence, are such tools.

If the performance task is the main course, the learning module is comprised of all the bites it takes to complete the meal. Every step in a learning module is a product contributing to the completion of the Performance Task.

Typically, these steps break down into two categories:

1. **Checkpoints**: Parts of a whole / Steps in a process (e.g., (a) constraints of the problem, (b) graphing the constraints,) that benefit from revision before a student moves on
2. **Drafts**: The performance task product in draft form (e.g., the initial draft of a written piece), that benefits from focused feedback before being submitted in final form

Notice how both of the above categories represent *pivotal moments* in a student’s creative process. If a student barrels ahead in conducting an experiment without first having conducted background research, developed a hypothesis, and considered the best method for testing that hypothesis, then the student’s work will likely be for naught. The best case is that the student’s results are grossly inaccurate, she learns the importance of attending to the process of scientific inquiry, she goes on to demonstrate understanding through revision or in later projects, and the mistake serves as a cautionary tale that the student never repeats.

Learning modules thus define the learning path a student may take when completing a project in order to create a quality final product, thereby demonstrating cognitive achievement.

The above graphic represents how students use learning modules as a path towards achieving learning goals set out by our shared assessment plan. Some things to keep in mind when designing learning modules include:

Learning modules are designed for students to use. Teachers are pivotal in supporting student learning throughout projects, but learning modules are not written as lesson plans. Rather, they are developed as a series of steps leading to student success on a performance task.
Learning modules, like playlists, include multiple forms of formative assessment and multiple opportunities for feedback from peers and teacher(s). If there is one undeniable truth about learning, it is that multiple timely opportunities for focused feedback are essential. If we already know and can explain where the learner is going, then formative assessments help us—students and teachers—understand where the student is now. In understanding where the student is, we can provide the necessary feedback to help students accelerate their learning so that they achieve their goals—they get where they’re going—more quickly, and with greater self-direction.

Examples of formative assessment at work in learning modules includes:

- Write your thesis
- Submit your research proposal
- Outline your presentation
- Complete a draft of your lab report
- Formulate the problem with the given data set
- Annotate the poem
- Provide relevant research from valid sources both for and against the Dream Act

Note that all of these products:

1. Are essential pieces of a larger performance task (main course, not dessert),
2. Are cognitively demanding,
3. Can receive feedback from peers, experts, teachers, or via self-assessment,
4. Provide evidence of understanding that helps both student and teacher make data-driven decisions about the next steps for the student’s learning.

What’s the difference between a Learning Module and a Playlist?

<table>
<thead>
<tr>
<th>Playlist</th>
<th>Learning Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports learning of content in the course’s guide (assessed via Illuminate content assessment)</td>
<td>Supports student success on a performance task (assessed via Show Evidence “Look-Fors” towards the cognitive skills rubric)</td>
</tr>
<tr>
<td>Organized around “micro-standards” / objectives</td>
<td>Organized around the steps in a learning process</td>
</tr>
<tr>
<td>Built in Activate</td>
<td>Built in Show Evidence</td>
</tr>
<tr>
<td>Kicks out to many resources (such as the Stanford History Education Group, the Khan Academy, CK-12 Flexbooks, Avenue Language Learning, etc.)</td>
<td>Most of the resources are built internally—these are steps in the learning process, which include playlists are important moments</td>
</tr>
</tbody>
</table>

Show Evidence

As essential as learning modules are, they are one of the more challenging aspects of our shared curriculum and assessment plan to build at the moment. While Show Evidence is working out some kinks, the construction of learning modules continues to be clunky. This clunkiness won’t last forever, and it is more of a barrier to understanding the program than to putting quality work into the program.
Here are some of the primary issues with Show Evidence at the moment.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Why this stinks</th>
<th>How we can get around it</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you want a student to submit anything, then you have to create a “performance task.”</td>
<td>We’re using the term performance task to designate the assessment of a project (such as “the persuasive speech”). Show Evidence is using the term performance task to mean any assessment in their system (such as “topic selection and rationale” or “speech outline”).</td>
<td>At the moment, be clear about how you’re using the term. We’re working with SE to make this change—the hope is that they start delineating between “Performance Tasks” and “Formative Assessments.”</td>
</tr>
<tr>
<td>It takes many (sometimes unintuitive) steps to create learning modules and performance tasks.</td>
<td>It takes time and can be frustrating.</td>
<td>Please assume that the problem is Show Evidence, and not you. With that assumption, get in touch with Howard, Jon, Lily, Kieran, Lizzie, Jesse, Zack, Adam, most Orange Team members, or anyone else with Show Evidence experience when you run into a roadblock.</td>
</tr>
<tr>
<td>The cognitive skills rubric is not yet in any shape to be a tool linked to grades.</td>
<td>While we have common language and common goals derived from the cognitive skills rubric, it would be so nice to be able to use the rubric as an assessment tool. This is not currently possible.</td>
<td>The categories and topics on the rubric are strong and developed from valid sources such as the Common Core, EPIC’s key cognitive skills framework, and 21st Century Skills, even if the gradations of descriptors are not yet ready for prime-time. Kyle Moyer is working on developing the rubric, and outside partners are being consulted, as well. “Look-Fors” bridge the gap between the big, abstract cognitive skills rubric and the performance tasks. Treat these as the rubric.</td>
</tr>
</tbody>
</table>
Sample Performance Task Inside a Learning Module:

The default says “Section Title,” but you can change this.

Here is the close-up view of one of the sections in the learning module:

Notice that each section of the learning module (LM) includes a few elements:

1. A title
2. A description
3. The duration of time this section of the LM should take
4. The recommended (or required) grouping for this section
5. A picture
6. Additional section pages
7. Work submission (if desired)
8. [Note: You can also add instructor notes for the TEACHER in an LM; see the Show Evidence Project Template Google doc for more detailed instructions on how to do this.]
Pointers:

Integrating Activate Playlists: When building a LM, you will want students to complete particular playlists at logical points in their learning. The best place to do so is, at the moment, at the bottom of the section descriptions. Thus, in the example on the previous page, the LM author would link to important playlists at the bottom of the description. Based on the information in the description, those links would look like this:

<table>
<thead>
<tr>
<th>Complete these playlists and pass these content assessments to help you complete the first draft of your historical narrative:</th>
</tr>
</thead>
</table>
| 1. (ELA) Imagery 2
2. (ELA) Dialogue 2
3. (ELA) Diction 1
4. (ELA) Theme 2
5. (SS) Psychological Impact: Disillusionment
6. (SS) Key Battles and Events, Pacific Theater
7. (SS) Key Battles and Events, Europe/N. Africa |

Each of the above would link out to a playlist, so students can integrate their learning of key content into their work to develop their historical narratives.

More is More: In LMs, the steps in developing a quality work product (be it a written piece, a multimedia presentation, or a spoken argument), should be clearly defined, step-by-step, for students. If you are trying to decide whether or not to have students brainstorm a topic, for example, then think about this: “will this step help students develop a better work product?” And, “if I included this step in the LM, would it be useful for me (or others) to provide feedback to at least some students?” If the answer to either of these questions is yes, then include the step. Including a step does not mean that you can’t tell some students that the step can be skipped, and it doesn’t mean that you (or anyone else) is compelled to give feedback. However, you have the opportunity to do so only if the step is included.

Scoring Guides: Scoring Guides are assessment tools. You can place them into Show Evidence through what is currently a relatively painstaking process, so all of the big performance tasks (the ones that are the culminating assessments for every project) should be linked to the cognitive skills rubric. This will happen later, however, after we’ve had the opportunity to work out some of the kinks in Show Evidence. However, it will be important to know the following:

You can include smaller rubrics and checklists that you may use to provide targeted feedback to a student on a piece of process writing, such as:

- **Evidence** is incorporated smoothly into the writing and does not stand alone
- **Evidence** is concrete (summary, quotation, or paraphrase)
- **Evidence** is as short as possible (no extra words/summary included)
- **Evidence** is “correctly cited” (24).
- **Evidence** is exceedingly well chosen
You may also include rubrics, such as this row from the cognitive skills rubric:

<table>
<thead>
<tr>
<th>Scoring Domain</th>
<th>No Evidence</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>Level 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deconstruction of Information and Pattern Analysis</td>
<td>No evidence of information deconstruction or pattern identification</td>
<td>Attempts to identify relevant information within a source; Unable to identify patterns because information is not broken down into useful pieces</td>
<td>Identifies some relevant information within a source; Information is grouped into useable pieces and pattern identification is attempted</td>
<td>Identifies all relevant information within a source; Information is grouped into useable pieces and patterns are identified</td>
<td>Identifies all relevant information within a wide range of sources, mostly familiar but some unfamiliar; information is grouped into useable pieces and all possible patterns are identified; some insights made, relevant to the problem</td>
<td>Identifies relevant information within a wide range of sources, mostly familiar but some unfamiliar; information is grouped into useable pieces and all possible patterns are identified; some insights made, relevant to the problem</td>
<td>Identifies relevant information within a wide range of sources, both familiar and unfamiliar; groups information/data into useable pieces and looks for patterns and relationships as the basis for developing ideas and insights relevant to the problem and its solution</td>
<td></td>
</tr>
</tbody>
</table>

The full cognitive skills rubric will be revised and placed into Show Evidence. It is not necessary to have all of the language perfect before you build projects, since the categories and topics of the rubric will remain the same; the language within will change to be most developmentally appropriate.

Key Features of Learning Modules:

1. They include a logical progression of steps leading to the completion of a Performance Task.
2. They are built in Show Evidence.
3. The primary audience for Learning Modules is students (although instructor notes can exist).
4. They are feedback-rich, with opportunities for teacher-student, student-student, and student-self interaction with the work products.
5. They are linked to the cognitive skills rubric, but assessed using “Look-Fors.”